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Abstract— Thermal infrared imaging has shown effective

results as a diagnostic tool in breast cancer detection. It

can be used as a complementary to traditional mammog-

raphy. Asymmetry analysis are usually used to help detect

abnormalities. However, in infrared imaging, this cannot

be done without human interference. This paper proposes

an automatic approach to asymmetry analysis in thermo-

grams. It includes automatic segmentation and pattern

classification. Hough transform is used to extract the four

feature curves that can uniquely segment the left and right

breasts. The feature curves include the left and the right

body boundary curves, and the two parabolic curves indi-

cating the lower boundaries of the breasts. Upon segmen-

tation, unsupervised learning technique is applied to clas-

sify each segmented pixel into certain number of clusters.

Asymmetric abnormalities can then be identified based on

pixel distribution within the same cluster. Both segmenta-

tion and classification results are shown on images captured

from Elliott Mastology Center.

Keywords— asymmetry analysis, breast cancer detection,

thermogram, Hough transform, pattern classification, un-
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I. Introduction

Making comparisons between contralateral images are
routinely done by radiologists. When the images are rela-
tively symmetrical, small asymmetries may indicate a sus-
picious region. This is the underlying philosophy in the
use of asymmetry analysis for mass detection in breast
cancer study [2]. Unfortunately, due to various reason
like short of radiologists, fatigue, carelessness, or simply
because of the limitation of human visual system, these
small asymmetries might not be easy to detect. There-
fore, it is important to design an automatic approach to
eliminate human factors.

There have been a few papers addressing techniques for
asymmetry analysis of mammograms [2], [7], [8], [9], [10],
[11]. [3], [5] recently analyzed the asymmetric abnormal-
ities in infrared images. In their approach, the thermo-
grams are segmented first by operator. Then breast quad-
rants are derived automatically based on unique point of
reference, i.e. the chin, the lowest, rightmost and leftmost
points of the breast. In an earlier paper we published [6],
Hough transform is used to segment the image, and cur-
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Fig. 1. Procedure of automatic asymmetry analysis of thermogram.

vature analysis is proposed to identify the abnormalities.
This paper extends our work on using Hough transform
for segmentation. New experimental results are provided.
Instead of using curvature analysis which is very sensitive
to noise, this paper describes a pattern classification ap-
proach which uses unsupervised learning to identify abnor-
malities. k-means algorithm is applied on the segmented
images.

Testing images are obtained using the Inframetrics
600M camera, with a thermal sensitivity of 0.050K.

II. Approach

Figure 1 is a block diagram of the five procedures in-
volved in the proposed approach: (1) Edge image detec-
tion by Canny edge detector; (2) Feature curve extraction
including the left and right body boundary curves, and
the two lower boundaries of the breasts. Hough trans-
form is used to detect the parabolic shaped lower breast
boundaries; (3) Segmentation based on the intersection
of the two parabolic curves and the line formed by the
two armpits; (4) Pattern classification using unsupervised
learning to group each pixel of the segments into certain
clusters; and (5) Pixel distribution of each cluster is ana-
lyzed and abnormalities can then be identified.

A. Edge detection by Canny edge detector

Edge image is first derived by using Canny edge detector
[1]. The standard deviation is chosen to be equal to 2.5
so that only strong edges are detected.
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B. Feature curve extraction by Hough transform

There are four dominant curves appeared in the edge
image which we called the feature curves: the left and
right body boundaries, and two lower boundaries of the
breasts. The body boundaries are easy to detect. Diffi-
culties lie in the detection of the lower boundaries of the
breasts. We observe that the breast boundaries are gen-
erally in parabolic shape. Therefore, Hough transform [4]
is used to detect the parabola.

C. Segmentation

Segmentation is based on three key points: the two
armpits (PL, PR) derived from the left and right body
boundaries by picking up the point where the largest
curvature occurs, and the intersection (O) of the two
parabolic curves derived from the lower boundaries of the
breasts. The vertical line that goes through point O and
is perpendicular to line PLPR is the one used to separate
the left and right breasts.

D. Unsupervised learning

Pixel values in a thermogram represent the thermal ra-
diation resulting from the heat emanates from the human
body. Different tissues, organs and vessels have differ-
ent amount of radiation. Therefore, by observing the heat
pattern, or in another word, the pattern of the pixel value,
we should be able to discover the abnormalities if there are
any.

Usually, in pattern classification algorithms, a set of
training data are given to derive the decision rule. All the
samples in the training set have been correctly classified.
The decision rule is then applied to the testing data set
where samples have not been classified yet. This classi-
fication technique is also called supervised learning. In
unsupervised learning, however, data sets are not divided
into training sets or testing sets. No a-priori knowledge
is known about which class each sample belongs to.

In asymmetry analysis, none of the pixels in the seg-
ment knows its class in advance, thus there will be no
training set or testing set. Therefore, this is an unsuper-
vised learning problem. We use k-means algorithm to do
the initial clustering. k-means algorithm is described as
follows:

1. Begin with an arbitrary set of cluster centers and assign
samples to nearest clusters;
2. Compute the sample mean of each cluster;
3. Reassign each sample to the cluster with the nearest
mean;
4. If the classification of all samples has not changed, then
stop, else go to step 2.

E. Within cluster pixel distribution

After each sample is relabeled to a certain cluster, the
cluster mean can then be calculated. The segmented im-
age can also be displayed in labeled format. From the
difference of mean distribution, we can tell if there is any
asymmetric abnormalities.

III. Experimental Results

Testing images are obtained using the Inframetrics
600M camera, with a thermal sensitivity of 0.050K. The
image are collected at Elliott Mastology Center. Results
from two testing images (lr, nb) are shown here.

Figure 2 shows the intermediate results from edge de-
tection, feature curve extraction, to segmentation. From
the figure, we can see that Hough transform can derive
the parabola at the accurate location.

Figure 3 provides the histogram of pixel value from each
segment with 10-bin setup. We can tell just from the
shape of the histogram that lr shows a more apparent
abnormalities than nb. However, histogram only reveals
global information.

Figure 4 displays the classification results for each seg-
ment in its labeled format. Here, we choose to use four
clusters. The figure also shows the mean difference of
each cluster in each segmented image. From Fig. 4, we
can clearly see the much bigger difference shown in the
mean distribution or image lr which can also be observed
from the labeled image.

IV. Conclusion

This paper describes an automatic approach for asym-
metry analysis in thermograms to help identify abnormal-
ities. It includes an automatic segmentation using Hough
transform and an unsupervised pattern classification for
segment comparison. From the experimental results, we
can see that Hough transform can accurately extract the
feature curves, and k-means algorithm provides useful in-
formation in the analysis of abnormalities.
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Fig. 2. Segmentation results of two images. Left: results from lr. Right: results from nb. From top to bottom: original image, edge image,
four feature curves, segments.
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Fig. 3. Histogram of the left and right segments. Top: results from lr. Bottom: results from nb. From left to right: the segments,
histogram of the left segment, histogram of the right segment.
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Fig. 4. Labeled image and the profile of mean for each cluster. Left: results from lr. Right: results from nb. Top: labeled image. Bottom:
average pixel value profile of each cluster
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